

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

¹H and ¹³C NMR Chemical Shifts and N-Substituent Effects of Some Unsymmetrically N,N-Disubstituted Acetamides

Helio G. Bonacorso^a; Miguel S. B. Caro^a; Nilo Zanatta^a; Marcos A. P. Martins^a

^a Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

To cite this Article Bonacorso, Helio G. , Caro, Miguel S. B. , Zanatta, Nilo and Martins, Marcos A. P.(1993) ¹H and ¹³C NMR Chemical Shifts and N-Substituent Effects of Some Unsymmetrically N,N-Disubstituted Acetamides', Spectroscopy Letters, 26: 8, 1381 — 1393

To link to this Article: DOI: 10.1080/00387019308011617

URL: <http://dx.doi.org/10.1080/00387019308011617>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**¹H AND ¹³C NMR CHEMICAL SHIFTS AND N-SUBSTITUENT EFFECTS OF SOME
UNSYMMETRICALLY N,N-DISUBSTITUTED ACETAMIDES**

KEY WORDS: ¹H and ¹³C NMR assignments of Amides,
Unsymmetrical Amides

Helio G. Bonacorso, Miguel S.B. Caro, Nilo Zanatta
and Marcos A.P. Martins*.

Departamento de Química, Universidade Federal de Santa Maria,
97.119-900 Santa Maria, RS Brazil.

ABSTRACT: The ¹H and ¹³C NMR chemical shift assignments of a series of (E)- and (Z)-N,N-Dialkylacetamides [$\text{CH}_3\text{C(O)NR}^1\text{R}^2$, with $\text{R}^1/\text{R}^2 = \text{Me/Et}$ (1), Me/n-Bu (2), Et/n-Bu (3), Et/t-Bu (4), Me/Hydroxyethyl (5), Et/Hydroxyethyl (6), $\text{Et/Acetylhydroxyethyl}$ (7)] are reported. The ¹H chemical shifts for the N-substituents of the amides 1-7 recorded in benzene-d₆ and in chloroform-d₁ are in agreement with the Hatton and Richards (ASIS) and Paulsen-Todt models, respectively. The ¹³C chemical shifts for the N-substituents of compounds 1-3 were compared with data of the corresponding symmetrical amides, and the results can be explained by the reciprocal steric compression effect of one

* Author to whom correspondence should be addressed.

N-substituent on the other. The validity of this explanation is confirmed by ^{13}C spin-lattice relaxation time (T_1) measurements.

INTRODUCTION

Although N,N-dialkyl aliphatic amides have been studied extensively by ^1H and ^{13}C NMR spectroscopy¹⁻⁶, there is a lack of ^1H and ^{13}C NMR data for unsymmetrically N,N-disubstituted amides in the literature^{1,7,8}.

Symmetrical N,N-Dialkylamides are known to exhibit different chemical shifts for the carbon atoms in *syn*- and *anti*-position to the oxygen of the carbonyl group²⁻⁴. Levy and Nelson³ attributed these different values to the steric compression effect of the carbonyl oxygen atom on the *syn* carbon atoms leading to an upfield shift, in addition to the electric field shielding effect due to the oxygen atom¹. Fritz et. al.⁴ explained the differences between the *syn*- and *anti*-carbon shielding effect by comparison with those of olefins. In a previous work⁶, we also concluded that major contribution to the differences of chemical shift values of the *syn*- and *anti*-N-alkyl groups of N,N-diethylacetamides, in comparison with N,N-dialkylformamides, can be derived from *trans*- and *cis*-olefin effects⁴, respectively. The differences between the chemical shifts of the N-alkyl carbons of α -mono-substituted N,N-diethylacetamides are caused by the *trans*- and *cis*-olefin effect and the direct or indirect steric compression effect⁶.

In this work the ^1H and ^{13}C NMR spectra of seven unsymmetrically substituted N,N-dialkylacetamides [$\text{CH}_3\text{C}(\text{O})\text{NR}^1\text{R}^2$, with $\text{R}^1/\text{R}^2 = \text{Me/Et}$ (1), Me/n-Bu (2), Et/n-Bu (3), Et/t-Bu (4), Me/Hydroxyethyl (5), Et/Hydroxyethyl (6), $\text{Et/Acetylhydroxyethyl}$

(7)] were recorded. Proton and carbon resonances for *syn*- and *anti*-N-substituents of the (*E*)- and (*Z*)-isomers were assigned through a series of homo- and heteronuclear COSY experiments, as well as by DEPT 90° and 135°. The proton resonances thus obtained for *syn*- and *anti*-N-alkyl-substituents will be applied to the theories of aromatic solvent induced shifts (ASIS)⁹ and the Paulsen-Todt model¹⁰. The *syn*- and *anti*-N-alkyl-substituent carbon resonances will be analyzed in comparison with the data of the corresponding symmetrical N,N-dialkylamides.

RESULTS AND DISCUSSION

¹H NMR

The ¹H NMR experiments were performed in chloroform-d₁ and benzene-d₆ solutions. In chloroform-d₁ the proton resonances of (*E*)- and (*Z*)-N-substituted amides were partially superimposed. In Table 1 the ¹H chemical shifts of the N,N-dialkylacetamides 1-7 are listed.

When benzene-d₆ is used as solvent, the N-C(1) proton resonances of the *anti*-N-substituents are shifted by 0.18-0.65 ppm upfield relative to the *syn*-N-substituents. However, the N-C(1) proton resonances of the *anti*-N-substituents are shifted by 0-0.12 ppm downfield in relation to the *syn*-N-substituents (except for the compound 3) when chloroform-d₁ is used as solvent. In benzene-d₆ the N-C(2) proton resonances of the *anti*-N-substituents are shifted upfield in comparison with the *syn*-N-substituents. However, in chloroform-d₁ the tendency for the N-C(2) protons is reversed.

TABLE 1

¹H Chemical shifts^a of N,N-dialkylacetamides 1-7.

Compd.	Isomer	α -CH ₃	N-C ¹		C ²		C ³		C ⁴	
			C	B	C	B	C	B	C	B
1	Me	Z	2.08	1.66	2.98	2.16				
	Me	E	2.06	1.71	2.91	2.65				
	Et	Z			3.42	3.20	1.10	0.86		
2 ^b	Et	E			3.33	2.55	1.18	0.56		
	Me	Z	2.10	1.79	3.0	2.7				
	Me	E	2.10	1.79	2.9	2.3				
3 ^b	n-Bu	Z			3.4	3.2	1.5	1.3	1.3	1.2
	n-Bu	E			3.3	2.7	1.6	1.3	1.3	1.2
3 ^b	Et	Z	2.04	1.82	3.23	2.91	1.2	0.9		
	Et	E	2.04	1.82	3.35	3.34	1.1	1.0		
4	n-Bu	Z			3.27	3.30	1.5	1.4	1.3	1.1
	n-Bu	E			3.24	2.78	1.6	1.3	1.3	1.1
4	Et	Z	2.12	-	3.37	-	1.18	-		
	Et	E	-	-	-	-	-	-		
5	t-Bu	Z			-	-	1.18	-		
	t-Bu	E			-	-	-	-		
5	Me	Z	2.08	1.79	3.10	2.66				
	Me	E	2.12	2.04	2.92	2.84				
CH ₂ CH ₂ OH	Z				-	3.45	-	3.63		
	CH ₂ CH ₂ OH	E			-	3.12	-	3.77		
6	Et	Z	2.11	1.79	3.52	2.95	1.20	0.78		
	Et	E	2.11	2.02	3.41	3.35	1.11	1.03		
CH ₂ CH ₂ OH	Z				3.48	3.40	3.72	3.78		
	CH ₂ CH ₂ OH	E			3.48	3.12	3.72	3.62		
7	Et	Z	2.11	-	3.52	2.85	1.20	0.75		
	Et	E	2.12	-	3.41	3.24	1.11	0.97		
CH ₂ CH ₂ OAc	Z				3.56	3.39	4.21	4.16	2.06	-
	CH ₂ CH ₂ OAc	E			3.56	3.00	4.21	3.87	2.06	-

^a In ppm downfield from TMS. Solvents, C =Chloroform-d₁, B =Benzene-d₆.^b Values taken from 2-D NMR spectra.

At 80 MHz the protons attached to the N-C(3) and N-C(4) exhibit practically the same chemical shift in both solvents. The proton chemical shifts for the N-substituents of the amides 1-7 recorded in benzene-d₆ are as expected from literature⁹. Normally, the aromatic solvent induced shift (ASIS)⁹ of the

anti-N-substituent is upfield and larger than that of the syn-N-substituent due to the formation of a collision complex between the aromatic ring and the nitrogen as has been reported by Hatton and Richards⁹.

On the other hand, the chemical shift differences observed in chloroform-d₁ are explained satisfactorily by applying the Paulsen-Todt model¹⁰. This model explains the differences of proton chemical shifts in N-substituted amides with respect to the position occupied in space by each proton or group of protons relative to the plane of the carboxamide group. This plane determines zones out-of-plane and in-plane of larger shielding or deshielding, according to the distance and location relative to the carboxamide group.

In agreement with the steric model established for unsymmetrical amides¹, compound 4 seems only to occur in the Z-form. Furthermore it is shown that in the other acetamides the bulkier N-substituent preferentially occupies the position syn to the carbonyl oxygen^{1,3}.

¹³C NMR

In Table 2 the ¹³C chemical shifts of compounds 1-7 are listed.

The homo- and heteronuclear COSY experiments allowed the assignment of upfield resonances for N-C(1) and N-C(2) carbons to the respective syn-N-substituent group. Compound 4 exhibits only one ¹³C NMR signal, corresponding to the (Z)-isomer, where the N-t-butyl group is in syn position to the carbonyl oxygen.

The syn-N-substituents are shielded in relation to the anti-N-substituents, for the carbons N-C(1) (2.3-3.6 ppm) and

TABLE 2

¹³C Chemical shifts^a of N,N-dialkylacetamides 1-7.

Compd.		Isomer	$\alpha\text{-CH}_3$ ^b	C=O	N-C ¹	C ²	C ³	C ⁴
1	Me	Z	21.63	169.81	35.20			
	Me	E	20.80		32.39			
	Et	Z			41.89	12.07		
	Et	E			45.09	13.17		
2	Me	Z	20.22	169.44	34.92			
	Me	E	19.84		31.93			
	n-Bu	Z			46.01	28.24	18.82	12.64
	n-Bu	E			49.43	29.35	18.82	12.64
3	Et	Z	19.94	167.70	41.64	12.66		
	Et	E	19.72		38.84	11.51		
	n-Bu	Z			43.38	28.66	18.76	12.36
	n-Bu	E			46.72	29.88	18.60	12.36
4	Et	Z	24.48	170.88	40.38	16.69		
	Et	E	-	-	-	-		
	t-Bu	Z			56.58	28.84		
	t-Bu	E			-	-		
5	Me	Z	20.78	170.69	36.07			
	Me	E	20.45		32.48			
	CH ₂ CH ₂ OH	Z			49.53	59.17		
	CH ₂ CH ₂ OH	E			52.01	58.32		
6	Et	Z	19.50	169.34	43.09	12.15		
	Et	E	20.01		38.91	11.04		
	CH ₂ CH ₂ OH	Z			46.40	58.31		
	CH ₂ CH ₂ OH	E			48.66	57.97		
7	Et	Z	19.04	169.93 ^b	43.26	12.19		
	Et	E	19.04	170.39 ^b	40.07	10.97		
	CH ₂ CH ₂ OAc	Z			43.48	60.13	166.56	18.92
	CH ₂ CH ₂ OAc	E			45.78	60.13	166.56	18.92

^a In ppm downfield from TMS. Solvent, chloroform-d₁.^b These Z/E-assignments are interchangable.

N-C(2) (0-1.3 ppm). On the other hand, the shielding differences of the respective N-C(3) and N-C(4) carbons between the *syn*- and *anti*-N-substituents are neglectable.

The chemical shift data for the unsymmetrical N,N-dialkylacetamides 1-3 were analyzed in comparison with the data of the corresponding symmetrical N,N-dialkylacetamides¹¹. This analysis led to a determination of the $\Delta\delta C(1)$ and $\Delta\delta C(2)$ values, which represent the effects of each N-substituent in the unsymmetrical acetamide in relation to the corresponding N-substituent in the symmetrical acetamide, i.e. $\Delta\delta C(1,2) = \delta C(1,2)_{[UNSYMM.AMIDE]} - \delta C(1,2)_{[SYMM.AMIDE]}$.

Table 3 shows that the $\Delta\delta C(1)$ values decrease for *syn*- and *anti*-N-CH₃ (i.e., the methyl carbon is shielded, compounds 1,2) with the size of the carbon chain of the other N-substituent (shielding effect). A similar trend is observed for *syn*- and *anti*-N-CH₂CH₃ and N-CH₂CH₂CH₂CH₃ substituents. Thus, we conclude from the $\Delta\delta C(1)$ values that the shielding effect of N-substituents on N-CH₃ decreases in the series *n*-Bu(2) > Et(1). For N-CH₂CH₃ the order is *n*-Bu(3) > Me(1). For N-CH₂CH₂CH₂CH₃ the order is the same where the Et>Me compounds are 3,2. The results obtained from $\Delta\delta C(1)$ data can be explained by the reciprocal steric compression effect of one N-substituent on the other which leads to a shielding of the carbon atom³.

Another trend was observed for the $\Delta\delta C(2)$ values. For N-CH₂CH₃ substituents, we observed the following order of the shielding effect: *n*-Bu(3) > Me(1), for the N-CH₂CH₂CH₂CH₃ substituent Me(2) > Et(3). The results obtained from $\Delta\delta C(2)$ data for N-CH₂CH₃ can be explained also by the reciprocal steric compression effect between the N-substituents. The N-CH₂CH₂CH₂CH₃ substituent shows a different behavior. This behavior could be

TABLE 3

$\Delta\delta C^1$ and $\Delta\delta C^2$ values^a for Amides 1-3.

1 st N-Substituent		Compound/2 nd N-Substituent	
		$\Delta\delta C^1$	
CH_3	<i>syn</i> ^b	1/Et	2/n-Bu
	<i>anti</i>	-2.19	-2.65
CH_3-CH_2	<i>syn</i>	1.93	-1.12
	<i>anti</i>	2.54	-0.58
$CH_3CH_2CH_2CH_2$	<i>syn</i>	2/Me	3/Et
	<i>anti</i>	0.56	-2.07
		1.05	-1.66
<hr/>			
CH_3CH_2	<i>syn</i>	$\Delta\delta C^2$	
	<i>anti</i>	1/Me	3/n-Bu
$CH_3CH_2CH_2CH_2$	<i>syn</i>	-1.30	-1.54
	<i>anti</i>	-1.03	-1.86
		<hr/>	
	<i>syn</i>	2/Me	3/Et
	<i>anti</i>	-2.25	-1.83
		1.05	-1.57

^aIn ppm. Compared were $\Delta\delta(C^{1,2})$ values of the 1st-N-substituent and $CH_3C(O)N(1^{st}\text{-Substituent})_2$.

See also footnote 11 and text.

^b*syn*: Refers to the position of the 1stN-substituent relative to the carbonyl oxygen.

explained by the sum of β -effect and γ -effect from the methyl group of the *n*-butyl carbon chain and the N-methyl group, respectively, which can be larger than the sum of β -effect and γ -effects from the methyl group of the *n*-butyl carbon chain and the N-methylene carbon, respectively. The presence of a δ -effect

TABLE 4

¹³C Spin-lattice relaxation times (nT_1)^a of the N-n-butyl substituent of the N,N-dialkylacetamides 2 and 3.

Compound	R ¹	N-C ¹	C ²	C ³	C ⁴
2	Me	3.8	4.6	6.4	12.0
3	Et	3.4	4.0	5.8	10.5

^aIn seconds. n = number of protons attached to each carbon.

from the methyl group of the N-Ethyl carbon chain and the conformational effects could also be considered.

¹³C spin-lattice relaxation time (T_1) values provide an information about the mobility of the carbon chain¹². Table 4 shows the nT_1 (n = number of protons attached to each carbon multiplied by T_1) of the N-n-butyl substituent for compounds 2 and 3. These results confirm the reciprocal steric compression effect of one N-substituent on the other as mentioned above because all nT_1 values of carbon-13 of the N-n-butyl substituent of compound 2 (N-CH₃) are larger than the corresponding ones of compound 3 (N-CH₂CH₃).

EXPERIMENTAL

Compounds

The compounds 1-7 have been synthesized from the respective N,N-disubstituted amine and acetyl chloride⁸.

Spectra

¹H NMR spectra were recorded on a BRUKER AC-80 spectrometer at 80 MHz. For the measurements 0.1M solutions in chloroform-d₁ or benzene-d₆ containing 0.1 % tetramethylsilane (TMS) as internal reference and 5mm o.d. sample tubes were used. The conditions were as follows: deuterium internal lock, T = 308 K, pulse width 4.7 μ s, flip angle 90°, acquisition time 4.1 s, spectral width 1000 Hz, delay time 1.0 s, number of transients 16, and number of data points 8192.

¹³C NMR spectra of 0.5M solutions in chloroform-d₁ or benzene-d₆ containing 0.1 % TMS as internal reference were recorded in 5mm o.d. sample tubes on a BRUKER AC-80A spectrometer in FT mode at 20.15 MHz. The conditions were as follows: deuterium internal lock, probe temperature T = 308 K, pulse width 1.6 μ s, flip angle 30°, acquisition time 0.8 s, spectral width 5000 Hz, delay time 1.3 s, number of transients 6000, data points 8192.

The DEPT experiments were performed employing the pulse sequences, D1-90°(¹H)-D2-180°(¹H), 90°(¹³C)-D2-P0(¹H), 180°(¹³C)-D2-FID; delay time 1 s; 1/2 J(CH) = 3.3 ms; phase angle 90° at 16.8 μ s and 135° at 25.2 μ s. The other acquisition parameters were the same as for the ¹³C NMR spectra.

Homonuclear chemical shift correlation (COSY 45) experiments were carried out using the pulse sequence delay 90°-t₁-45° acquisition; the 90° pulse was 4.5 μ s, and a 1 s relaxation delay was used. A total of 16 transients were accumulated per time unit ; 256 time increments were applied to characterize the t₁ (proton) domain and 1024 points were used to characterize the t₂ (carbon) domain, and zero filling once in the t₂ domain was applied.

Heteronuclear chemical shift correlated spectra were obtained by using a composite pulse sequence delay with decoupling in both dimensions. A 1s relaxation delay was used, and the delay times $\Delta_1 = 0.5/J_{\text{CH}} = 3.5$ ms and $\Delta_2 = 0.25/J_{\text{CH}} = 1.75$ ms. The 90° (¹H) pulse was 16.8 μs and the 90° (¹³C) pulse was 4.8 μs . The spectral width in the t_2 domain was 893 Hz and in the t_1 domain 332 Hz; 4096 points were used in the t_2 domain and 256 time increments defined the resolution of the t_1 domain; a total of 300 transients were applied per increment.

The ¹³C spin-lattice relaxation time (T_1) measurements were performed using the Fast Inversion-Recovery Fourier Transform (FIRFT) technique¹³. The delay between the repetition of the sequence was 1 s with up to 12 variables delay times, ranging from 1 ms to 15 s. T_1 relaxation times were determined on a BRUKER Aspect 3000 computer applying a nonlinear three-parameter-fit^{14,15}.

Acknowledgements

The authors thank Prof. Dr. B. Nagel and Dr. L. Wessjohann for his aid in preparing the manuscript and for his valuable suggestions. Financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), and fellowships from CNPq are also acknowledged.

REFERENCES and FOOTNOTES

1. W.E. Stewart and T.H. Siddall, *Chem. Rev.* 70, 517 (1970).
2. A.H. Lewin and M. Frucht, *Org. Magn. Reson.* 7, 206 (1975).
3. Z.W. McFarlane, *J. Chem. Soc., Chem. Commun.* 418 (1970).

3. G.C. Levy and G.L. Nelson, *J. Am. Chem. Soc.* **94**, 4897 (1972).

4. H. Fritz, P. Hug, H. Santer and T. Winkler, *Org. Magn. Reson.* **16**, 36 (1981).

5. H.G. Bonacorso, M.S.B. Caro and M.A.P. Martins, *Química Nova*, **11**, 266 (1988).

6. M.A.P. Martins and R. Rittner, *Org. Magn. Reson.* **14**, 522 (1980).

R. Rittner, M.A.P. Martins and G. Clar, *Magn. Reson. Chem.* **26**, 73 (1988).

7. L.A. LaPlanche and M.T. Rogers, *J. Am. Chem. Soc.* **85**, 3728 (1963).

L. Isbrandt, W.C-T. Tung and M.T. Rogers, *J. Magn. Reson.* **9**, 461 (1973).

8. H.G. Bonacorso, M.S.B. Caro, N. Zanatta and M.A.P. Martins, *Magn. Reson. Chem.* **31**, 000 (1993).

9. J.V. Hatton and R.E. Richards, *Mol. Phys.* **5**, 139 (1962).

10. H. Paulsen and K. Todt, *Angew. Chem. Int. Ed. Engl.* **5**, 899 (1966).

11. The reference compounds for N-Me, N-Et, and N-n-Bu substituents were N,N-dimethylacetamide, N,N-diethylacetamide and N,N-di-n-butylacetamide, respectively (data from Ref. 4).

12. Breitmaier, E. and Voelter, W.; *Carbon-13 Spectroscopy: high resolution methods and applications in organic chemistry and biochemistry*, 3rd ed., VCH, N.Y. (1987).

13. D.J. Craik, A. Kumar and G.C. Levy, *J. Chem. Inf. Comp. Sci.* **23**, 30 (1983).

14. M. Sass and D. Ziessow, *J. Magn. Reson.* **25**, 263 (1977).

15. J. Kawalisky, G.C. Levy, L.F. Johnson and L. Palmer, *J. Magn. Reson.* **26**, 533 (1977).

Date Received: May 4, 1993
Date Accepted: June 8, 1993